
Current Opinion in

Volume 51 June 2018 ISSN 0958-1669

Biotechnology

Jan van der Meer & Greg N Stephanopoulos, Editors

June 2018

1

6

Systems biology

Edited by Nathan Price and Eran Segal

Nanobiotechnology

Edited by Alfonso Jaramillo and Mark Howarth

ist 2018 Tissue, Cell and Pathway Engineering

ber 2018 Chemical Biotechnology • Pharmaceutical Biotechnology

mber 2018 Analytical biotechnology

ary 2019 Analytical Biotechnology

2019 Energy biotechnology • Environmental biotechnology

Available online at www.sciencedirect.com

ScienceDirect

ScienceDirect

Biotechnology

Volume 51 June 2018

CONTENTS

Abstracted/indexed in: BIOSIS, CAB Abstracts International, CAB Health, Chemical Abstracts, EMBASE, Index Medicus, Medline. Also covered in the abstract and citation database SCOPUS[®]. Full text available on ScienceDirect[®]

- iv Mark Howarth and Alfonso Jaramillo Editorial overview: Nanobiotechnology: Baby steps and giant strides towards molecular mastery
- vii Nathan D Price and Eran Segal Editorial overview: Systems biology: Data, discovery, delivery

NanoBiotechnology

Edited by Alfonso Jaramillo and Mark Howarth

- Jefferson S Plegaria and Cheryl A Kerfeld
 Engineering nanoreactors using bacterial microcompartment architectures
- 8 Kyung Hyun Lee, Kiyofumi Hamashima, Michiko Kimoto and Ichiro Hirao Genetic alphabet expansion biotechnology by creating unnatural base pairs
- 16 Anusuya Banerjee and Mark Howarth Nanoteamwork: covalent protein assembly beyond duets towards protein ensembles and orchestras
- 24 RJ Eveline Li, Sandra J van Vliet and Y van Kooyk Using the glycan toolbox for pathogenic interventions and glycan immunotherapy
- 32 Andreas K Brödel, Mark Isalan and Alfonso Jaramillo Engineering of biomolecules by bacteriophage directed evolution
- 39 Ken'ya Furuta and Akane Furuta Re-engineering of protein motors to understand mechanisms biasing random motion and generating collective dynamics
- 47 Willem Kasper Spoelstra, Siddharth Deshpande and Cees Dekker Tailoring the appearance: what will synthetic cells look like?
- 80 Shaoying Wang, Zhengyi Zhao, Farzin Haque and Peixuan Guo Engineering of protein nanopores for sequencing, chemical or protein sensing and disease diagnosis

Systems biology

Edited by Nathan Price and Eran Segal

57 Stavros Bashiardes, Anastasia Godneva, Eran Elinav and Eran Segal Towards utilization of the human genome and microbiome for personalized nutrition

- 64 Chih-Chung Kuo, Austin WT Chiang, Isaac Shamle, Mojtaba Samoudi, Jahir M Gutierrez and Nathan E Lewis The emerging role of systems biology for engineering protein production in CHO cells
- 70 Laura J Dunphy and Jason A Papin Biomedical applications of genome-scale metabolic network reconstructions of human pathogens
- 90 Stefanía Magnúsdóttir and Ines Thiele Modeling metabolism of the human gut microbiome
- 97 Arthur P Goldberg, Balázs Szigeti, Yin Hoon Chew, John AP Sekar, Yosef D Roth and Jonathan R Karr Emerging whole-cell modeling principles and methods
- 103 Shu Pan and Jennifer L Reed
 Advances in gap-filling genome-scale metabolic models and
 model-driven experiments lead to novel metabolic discoveries
- 109 José Reyes and Galit Lahav Leveraging and coping with uncertainty in the response of individual cells to therapy
- 116 Hualan Liu and Adam M Deutschbauer Rapidly moving new bacteria to model-organism status
- 123 Paul Kearney, J Jay Boniface, Nathan D Price and Leroy Hood The building blocks of successful translation of proteomics to the clinic
- 130 James T Yurkovich and Bernhard O Palsson Quantitative -omic data empowers bottom-up systems biology
- 137 Philippe A Robert, Andrea LJ Marschall and Michael Meyer-Hermann Induction of broadly neutralizing antibodies in Germinal Centre simulations
- 146 Beatriz Peñalver Bernabé, Lauren Cralle and Jack A Gilbert Systems biology of the human microbiome

The cover

Image of moving actin filaments on a hybrid motor-coated surface generated using a temporal-colour code. The actin filaments were driven by the hybrid Lifeact-dynein motors. The images from a movie were colour coded and superimposed on top of one another so that moving filaments leave the traces with rainbow colours. The temporal-colour code scale is shown at the bottom of the image. The width of the image is 55 µm.